Department of

July 2013 August 2013 September 2013 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 1 2 3 1 2 3 4 5 6 7 7 8 9 10 11 12 13 4 5 6 7 8 9 10 8 9 10 11 12 13 14 14 15 16 17 18 19 20 11 12 13 14 15 16 17 15 16 17 18 19 20 21 21 22 23 24 25 26 27 18 19 20 21 22 23 24 22 23 24 25 26 27 28 28 29 30 31 25 26 27 28 29 30 31 29 30

Monday, August 26, 2013

**Abstract:** Let G be a Lie group acting on a manifold M. If the action is proper and free, then M/G is a manifold which admits a de Rham complex isomorphic to the subcomplex of basic forms on M. We will introduce the notion of a diffeology in order to extend this result to all proper actions. Time permitting, we will then compare this definition to a de Rham complex on a symplectic quotient as defined by Sjamaar.