Department of

August 2013 September 2013 October 2013 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Monday, September 16, 2013

**Abstract:** In classical mechanics, the dynamics of a Hamiltonian vector field models the motion of particles in phase space, and the dynamics of a contact vector field play a similar role in geometric optics (in the mathematical model of Huygens' principle). Topological Hamiltonian dynamics and topological contact dynamics are relatively recent theories that explore natural questions regarding the regularity of such dynamical systems (on an arbitrary symplectic or contact manifold). In a nutshell, Hamiltonian and contact dynamics admit genuine generalizations to non-smooth dynamical systems with non-smooth generating (contact) Hamiltonian functions. The talk begins with examples that illustrate the central ideas and lead naturally to the key definitions. The main technical ingredient is the well-known energy-capacity inequality for displaceable subsets of a symplectic manifold. We use it to prove an extension of the classical 1-1 correspondence between isotopies and their generating Hamiltonians. This crucial result turns out to be equivalent to certain rigidity phenomena for smooth Hamiltonian and contact dynamical systems. We then look at some of the foundational results of the new theories. The end of the talk touches upon sample applications to topological dynamics and to Riemannian geometry, which will be explored further in a second talk.