Department of

September 2013 October 2013 November 2013 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 1 2 3 4 5 1 2 8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9 15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23 29 30 27 28 29 30 31 24 25 26 27 28 29 30

Monday, October 14, 2013

**Abstract:** The Eliashberg-Gromov rigidity theorem implies that Symplectic Geometry underlines a topology. This talk is about the automorphism groups of this "continuous" symplectic topology. The group of symplectic homeomorphisms (Sympeo) has a remarkable subgroup: the group of Hamiltonian homeomorphisms (Hameo), defined by Oh and Müller using the $L^{(1q,\infty)}$ Hofer norm. We introduce a generalization of Hameo, called the group of strong symplectic homeomorphisms (SSympeo), using a generalization of the Hofer norm from the group of Hamiltonian diffeomorphisms to the whole group of symplectic diffeomorphisms. Each group Hameo and SSympeo has also a $L^\infty$ version. The two versions coincide (Müller, Banyaga-Tchuiaga).