Department of

December 2015 January 2016 February 2016 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 3 4 5 6 6 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 13 13 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 20 20 21 22 23 24 25 26 17 18 19 20 21 22 23 21 22 23 24 25 26 27 27 28 29 30 31 24 25 26 27 28 29 30 28 29 31

Monday, January 11, 2016

**Abstract:** A well-known principle in symplectic geometry says that information about the smooth structure on a manifold should be captured by the symplectic geometry of its cotangent bundle. One prominent example of this is Nadler and Zaslow's microlocalization correspondence, an equivalence between a category of constructible sheaves on a manifold and a symplectic invariant of its cotangent bundle called the Fukaya category. The goal of this talk is to describe a model for a relative version of this story in the simplest case, corresponding to Legendrian knots in the standard contact 3-space. This construction, called the augmentation category, is a powerful invariant which is defined in terms of holomorphic curves but can also be described combinatorially. I will describe some interesting properties of this category and relate it to a category of sheaves on the plane. This is joint work with Lenny Ng, Dan Rutherford, Vivek Shende, and Eric Zaslow.