Department of

March 2016 April 2016 May 2016 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 3 4 5 6 7 6 7 8 9 10 11 12 3 4 5 6 7 8 9 8 9 10 11 12 13 14 13 14 15 16 17 18 19 10 11 12 13 14 15 16 15 16 17 18 19 20 21 20 21 22 23 24 25 26 17 18 19 20 21 22 23 22 23 24 25 26 27 28 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31

Thursday, April 14, 2016

**Abstract:** Joint work with Jacob Tsimerman. Let B(g,p) denote the number of isomorphism classes of g-dimensional abelian varieties over the finite field of size p. Let A(g,p) denote the number of isomorphism classes of principally polarized g dimensional abelian varieties over the finite field of size p. We derive upper bounds for B(g,p) and lower bounds for A(g,p) for p fixed and g increasing. The extremely large gap between the lower bound for A(g,p) and the upper bound B(g,p) implies some statistically counterintuitive behavior for abelian varieties of large dimension over a fixed finite field.