Abstract: We will introduce the notion of a D-module on a variety X, a generalization of the concept of a vector bundle with flat connection. We know that over a smooth manifold, a vector bundle with flat connection is equivalent to a local system, a family of vector spaces over the manifold related to each other by parallel transport along paths in the manifold. It seems hard to translate this picture back to algebraic geometry, for example because we have no good notion of paths in a variety, but luckily Grothendieck introduced the idea of crystals of sheaves: these are sheaves with parallel transport between infinitesimally close points. We will explain this definition, and sketch the proof of the equivalence between crystals and D-modules. We will consider advantages of each approach, and along the way will see naturally occurring (and not-too-scary) examples of stacks and their categories of sheaves.