Department of

November 2016 December 2016 January 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14 13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21 20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28 27 28 29 30 25 26 27 28 29 30 31 29 30 31

Thursday, December 1, 2016

**Abstract:** For any $k\geq 1$, we study the distribution of the difference between the number of integers $n\leq x$ with $\omega(n)=k$ or $\Omega(n)=k$ in two different arithmetic progressions, where $\omega(n)$ is the number of distinct prime factors of $n$ and $\Omega(n)$ is the number of prime factors of $n$ counted with multiplicity . Under some reasonable assumptions, we show that, if $k$ is odd, the integers with $\Omega(n)=k$ have preference for quadratic non-residue classes; and if $k$ is even, such integers have preference for quadratic residue classes. This result confirms a conjecture of Hudson. However, the integers with $\omega(n)=k$ always have preference for quadratic residue classes. Moreover, as $k$ increases, the biases become smaller and smaller for both of the two cases.