Department of

December 2016 January 2017 February 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 4 5 6 7 8 9 10 8 9 10 11 12 13 14 5 6 7 8 9 10 11 11 12 13 14 15 16 17 15 16 17 18 19 20 21 12 13 14 15 16 17 18 18 19 20 21 22 23 24 22 23 24 25 26 27 28 19 20 21 22 23 24 25 25 26 27 28 29 30 31 29 30 31 26 27 28

Friday, January 27, 2017

**Abstract:** In symmetric function theory, various distinguished bases for the ring of (deformed) symmetric functions come from specifying an inner product on said ring and then performing Gram-Schmidt on the monomial symmetric functions. In the case of Jack polynomials, there is an alternative characterization as eigenfunctions for the Calogero-Sutherland operator. This operator gives a completely integrable system, hinting at some additional algebraic structure, and an investigation of this structure digs up the affine Hecke algebra. Work of Cherednik and Matsuo formalize this in terms of an isomorphism between the affine Knizhnik-Zamolodichikov (KZ) equation and the quantum many body problem. Looking at q-analogues yields a connection between the affine Hecke algebra and Macdonald polynomials by relating the quantum affine KZ equation and the Macdonald eigenvalue problem. All of this can be streamlined by circumventing the KZ equations via Cherednik's double affine Hecke algebra (DAHA). I hope to introduce various characters in this story and give a sense of why having a collection of commuting operators can be a great thing.