Department of

January 2017 February 2017 March 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4 8 9 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18 22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 25 29 30 31 26 27 28 26 27 28 29 30 31

Thursday, February 23, 2017

**Abstract:** G. H. Hardy and S. Ramanujan established an asymptotic formula for the number of unrestricted partitions of a positive integer, and claimed a similar asymptotic formula for the number of partitions into perfect $k$th powers, which was later proved by E. M. Wright. In this talk, we discuss partitions into parts from a specific set $A_k(a_0,b_0) :=\left\{ m^k : m \in \mathbb{N}, m\equiv a_0 \pmod{b_0} \right\}$, for fixed positive integers $k$, $a_0,$ and $b_0$. We give an asymptotic formula for the number of such partitions, thus generalizing the results of Wright and others. We also discuss the parity problem for such partitions. This is joint work with Bruce Berndt and Alexandru Zaharescu.