Department of

February 2017 March 2017 April 2017 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 1 2 3 4 1 5 6 7 8 9 10 11 5 6 7 8 9 10 11 2 3 4 5 6 7 8 12 13 14 15 16 17 18 12 13 14 15 16 17 18 9 10 11 12 13 14 15 19 20 21 22 23 24 25 19 20 21 22 23 24 25 16 17 18 19 20 21 22 26 27 28 26 27 28 29 30 31 23 24 25 26 27 28 29 30

Tuesday, March 28, 2017

**Abstract:** This talk is about an emerging connection between algebraic $K$-theory and free loop spaces on the one hand, and periodic orbits of continuous dynamical systems on the other. The centerpiece is a construction in equivariant stable homotopy theory called the "$n$th power trace," which relies on the equivariant norm construction of Hill, Hopkins, and Ravenel. This trace is a refinement of the Lefschetz zeta function of a map $f$, which detects not just fixed points but also periodic orbits of $f$. The applications so far include the resolution of a conjecture of Klein and Williams, and a new approach for the computation of transfer maps in algebraic $K$-theory. These projects are joint work with John Lind and Kate Ponto.