Department of

Mathematics


Seminar Calendar
for events the day of Friday, September 8, 2017.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
     August 2017           September 2017          October 2017    
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
        1  2  3  4  5                   1  2    1  2  3  4  5  6  7
  6  7  8  9 10 11 12    3  4  5  6  7  8  9    8  9 10 11 12 13 14
 13 14 15 16 17 18 19   10 11 12 13 14 15 16   15 16 17 18 19 20 21
 20 21 22 23 24 25 26   17 18 19 20 21 22 23   22 23 24 25 26 27 28
 27 28 29 30 31         24 25 26 27 28 29 30   29 30 31            
                                                                   

Friday, September 8, 2017

12:00 pm in 243 Altgeld Hall,Friday, September 8, 2017

Life’s a blur, live on the edge

Derek Jung (UIUC)

Abstract: A focal problem in image processing is deblurring images and a common model for blurring images is convolution with a fixed kernel. I consider an integral operator arising from taking the blurred image of the edge of an opaque wall. I prove that the Tikhonov regularized problem for this operator is well-posed, which essentially means that one can invert the blurred image to the kernel continuously. This is joint work with Dr. Aaron Luttman and Dr. Kevin Joyce and was performed during a summer internship with National Security Technologies in Las Vegas. No background is necessary, but some knowledge of measure theory would be helpful.

1:00 pm in 141 Altgeld Hall,Friday, September 8, 2017

Keisler Measures, ctd.

Travis Nell   [email]

Abstract: We continue reading chapter 7 of Simon's A Guide to NIP Theories.

4:00 pm in 345 Altgeld Hall,Friday, September 8, 2017

"Borel circle squaring" by Marks and Unger: Part 1

Anton Bernshteyn (Illinois Math)

Abstract: This is the first in a series of talks based on a recent paper of A.S. Marks and S.T. Unger. In 1925, Tarski asked if it is possible to decompose a disk in the plane into finitely many pieces and then rearrange them to form a square of the same area. Due to the apparent similarity between this problem and the Banach--Tarski paradox, it might appear that any such "circle squaring" must rely on the Axiom of Choice; and indeed, in 1990 Laczkovich answered Tarski's question in the affirmative using a non-constructive approach. However, Marks and Unger show in their paper that, somewhat surprisingly, it is possible to perform a "circle squaring" using only Borel pieces. In this talk I will go over the history of the problem and sketch some of the main ingredients that go into Marks and Unger's proof.

4:00 pm in 241 Altgeld Hall,Friday, September 8, 2017

An Introduction to Classifying Spaces

Daniel Carmody (UIUC Math)

Abstract: In this introductory talk I'll begin by recalling the notion of a principal $G$-bundle, then I'll move to discussing how one constructs classifying spaces of such things. In the process, I'll introduce simplicial spaces and describe the relationship between simplicial spaces and topological spaces.