Department of

October 2017 November 2017December 2017Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th FrSa1 2 3 4 5 6 7 1 2 3 4 1 2 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9 15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 151622 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23 29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 31

Monday, November 6, 2017

**Abstract:** I will discuss the paper $``$A Vietoris-Smale mapping theorem for the homotopy of hyperdefinable sets$''$ by Alessandro Achille and Alessandro Berarducci $[\href{https://arxiv.org/abs/1706.02094}{arXiv}]$. In this paper, they compare the definable homotopy groups of a definable space $X$ (denoted $\pi_n(X)^\mathrm{def}$) with the (usual) homotopy groups of the quotient $X/E$, where $E$ is a certain kind of type-definable equivalence relation on $X$. Under certain assumptions, these groups are actually isomorphic. These types of quotients were first studied by Pillay in the case that $X$ is actually a definable group. No knowledge of model theory will be assumed. In particular ``definable,'' ``type-definable'' and ``o-minimal'' will all be defined.