Department of

October 2017 November 2017December 2017Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th FrSa1 2 3 4 5 6 7 1 2 3 4 1 2 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9 15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 151622 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23 29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 31

Tuesday, November 7, 2017

**Abstract:** We provide a new proof of a recent theorem of Ben-Yaacov, Melleray, and Tsankov. If $G$ is a Polish group and X is a minimal, metrizable $G$-flow with all orbits meager, then the universal minimal flow $M(G)$ is non-metrizable. In particular, we show that given $X$ as above, the universal highly proximal extension of $X$ is non-metrizable.