Department of

October 2017November 2017December 2017 Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 1 2 3 4 1 2 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9 15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 15 16 22 23 24 25 26 27 28 19 20 21 222324 25 17 18 19 20 21 22 23 29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 31

Wednesday, April 5, 2017

**Abstract:** The definition of a vertex algebra was formulated by Borcherds in the 1980s to solve algebraic problems, but these objects turn out to have important applications in mathematical physics, especially related to models of 2d conformal field theory. In the 1990s, Beilinson and Drinfeld gave geometric formulations of the definition, which they called chiral algebras and factorization algebras. These different approaches each have advantages and disadvantages: for example, the definition of a vertex algebra is more concrete and has so far been better studied; on the other hand, the geometric approach of chiral algebras and factorization algebras allows for transfer of knowledge between the fields of geometry, physics, and representation theory, and furthermore admits natural generalizations to higher dimensions. In this talk we will introduce all three of these objects; then we will discuss the relationships between them, especially focusing on how information from any one approach can lead to new understanding in the others.

Thursday, September 21, 2017

Thursday, September 28, 2017

Thursday, October 5, 2017

Thursday, October 12, 2017

Thursday, October 19, 2017

Tuesday, October 24, 2017

Thursday, October 26, 2017

Thursday, November 2, 2017

Thursday, November 9, 2017

Thursday, November 16, 2017

Thursday, November 30, 2017

Thursday, December 7, 2017