Department of

October 2017 November 2017December 2017Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th FrSa1 2 3 4 5 6 7 1 2 3 4 1 2 8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9 15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 151622 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23 29 30 31 26 27 28 29 30 24 25 26 27 28 29 30 31

Thursday, November 16, 2017

**Abstract:** Kloosterman sums arise naturally in the study of the distribution of various arithmetic objects in analytic number theory. The 'vertical' Sato-Tate law of Katz describes their distribution over a fixed field $F_p$, but the equivalent 'horizontal' distribution as the base field varies over primes remains open. We describe work showing cancellation in the sum over primes if there are exceptional Siegel-Landau zeros. This is joint work with Sary Drappeau, relying on a blend of ideas from algebraic geometry, the spectral theory of automorphic forms and sieve theory.