Department of

January 2018 February 2018March 2018Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo TuWeTh Fr Sa 1 2 3 4 5 6 1 2 3 1 2 3 7 8 9 10 11 12 13 4 5 6 7 8 9 10 4 5 6 7 8 9 10 14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17 21 22 23 24 25 26 27 18 19 20 21 22 23 24 18 19 202122 23 24 28 29 30 31 25 26 27 28 25 26 27 28 29 30 31

Wednesday, February 14, 2018

**Abstract:** In geometric group theory, we study a finitely generated group by looking at how the group acts on a metric space, using the topological or geometric properties of the metric space to shed light on the group. In particular, there has been lots of study about a finitely generated group acting nicely on a hyperbolic space based on properties of hyperbolic geometry. However, an arbitrary group does not admit a nice action on a hyperbolic space in general. Hence, many people have tried to generalize the techniques of hyperbolic geometry to study a more general metric space where a group might act nicely. In this talk, we will discuss hyperbolic geometry and how to use it to understand a finitely generated group. Moreover, we will talk about some generalizations of hyperbolic geometry with examples.