Department of

February 2018March 2018April 2018 Su Mo Tu We Th Fr Sa Su Mo TuWeTh Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 1 2 3 4 5 6 7 4 5 6 7 8 9 10 4 5 6 7 8 9 10 8 9 10 11 12 13 14 11 12 13 14 15 16 17 11 12 13 14 15 16 17 15 16 17 18 19 20 21 18 19 20 21 22 23 24 18 19 202122 23 24 22 23 24 25 26 27 28 25 26 27 28 25 26 27 28 29 30 31 29 30

Monday, March 5, 2018

**Abstract:** I will introduce the idea of multiplicative norms in equivariant and motivic homotopy theories. This is a necessary structure behind the theory of genuine rings, which are supposed to be like E_\infty algebras with additional multiplication structure. For example, in equivariant orthogonal spectra, norms help us establish a model structure on commutative rings that plays well with restriction along the inclusion of a subgroup. In motivic homotopy theory, there is a formulation of norms in terms of infinity-categorical Grothendieck construction. I will show that although this is a nice way to package the story, it is difficult to work with in terms of computations.