**Abstract:** We describe work with Zhaodong Cai, Matthew Faust, and Yuan Zhang that originated with some unexpected experimental discoveries made in an Illinois Geometry Lab undergraduate research project back in Fall 2015. Data compiled for this project suggested that Benford's Law (an empirical "law" that predicts the frequencies of leading digits in a numerical data set) is uncannily accurate when applied to many familiar mathematical sequences. For example, among the first billion Fibonacci numbers exactly 301029995 begin with digit 1, while the Benford prediction for this count is 301029995.66. The same holds for the first billion powers of 2, the first billion powers of 3, and the first billion powers of 5. Are these observations mere coincidences or part of some deeper phenomenon? In this talk, which is aimed at a broad audience, we describe our attempts at unraveling this mystery, a multi-year research adventure that turned out to be full of surprises, unexpected twists, and 180 degree turns, and that required unearthing nearly forgotten classical results as well as drawing on some of the deepest recent work in the area.