Department of

February 2018March 2018April 2018 Su Mo Tu We Th Fr Sa Su Mo TuWeTh Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 1 2 3 4 5 6 7 4 5 6 7 8 9 10 4 5 6 7 8 9 10 8 9 10 11 12 13 14 11 12 13 14 15 16 17 11 12 13 14 15 16 17 15 16 17 18 19 20 21 18 19 20 21 22 23 24 18 19 202122 23 24 22 23 24 25 26 27 28 25 26 27 28 25 26 27 28 29 30 31 29 30

Friday, March 16, 2018

**Abstract:** It is commonly known that separable Banach spaces embed isometrically into the separable space $C(\Delta)$, where $\Delta$ is the Cantor set. Taking the Effros-Borel structure $\mathcal F(C(\Delta))$, we can then view the collection of separable Banach spaces as a Borel subset $\mathcal B \subseteq \mathcal F(C(\Delta))$ and consider the existence of an isomorphism between Banach spaces to be an equivalence relation on $\mathcal B$. For this expository talk, I will present some basic descriptive set theoretic techniques used to determine the complexity of isomorphism equivalence classes, in particular the Borel case of the class for $\ell_2$, and a non-Borel analytic case with Pelczynski’s universal space $\mathcal U$.