Department of

March 2018 April 2018May 2018Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 232425 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Thursday, April 12, 2018

**Abstract:** It is well-known that every non-Archimedean Polish group is isomorphic as a topological group to the automorphism group of a countable structure, and analogously, that every Polish group is isomorphic to the automorphism group of a separable metric structure. We will present a generalization of this result: every open locally Polish groupoid admits a full and faithful Borel functor to the groupoid of metric L-structures on the Urysohn sphere, for some countable metric language L. This partially answers a question of Lupini. We will also discuss the analogous result in the non-Archimedean case.