Department of


Seminar Calendar
for Topology events the year of Monday, April 16, 2018.

events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
      March 2018             April 2018              May 2018      
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
              1  2  3    1  2  3  4  5  6  7          1  2  3  4  5
  4  5  6  7  8  9 10    8  9 10 11 12 13 14    6  7  8  9 10 11 12
 11 12 13 14 15 16 17   15 16 17 18 19 20 21   13 14 15 16 17 18 19
 18 19 20 21 22 23 24   22 23 24 25 26 27 28   20 21 22 23 24 25 26
 25 26 27 28 29 30 31   29 30                  27 28 29 30 31      

Friday, January 19, 2018

4:00 pm in 241 Altgeld Hall,Friday, January 19, 2018

Organizational Meeting

Abstract: We'll get the schedule of talks for the semester worked out. There will be cookies.

Friday, January 26, 2018

4:00 pm in 241 Altgeld Hall,Friday, January 26, 2018

Ice cream geometry: a mathematical activity and coloring book

Melinda Lanius (UIUC)

Abstract: Come explore metrics I use in my dissertation research. In a souped-up color-by-numbers, we'll develop a general notion of circle and ball. In geodesic connect-the-dots, we'll see what happens when straight lines curve. In metric mazes, we'll come to appreciate the wonky ways of nonhomogeneous spaces. After exploring the geometries of the real and hyperbolic plane, sphere, cone, and cylinder, we'll conclude by building less familiar objects: surfaces with a Euclidean, cylindrical, conical, or hyperbolic-funnel end. Please bring your fun office supplies!

Tuesday, January 30, 2018

11:00 am in 345 Altgeld Hall,Tuesday, January 30, 2018

Localizing the E_2 page of the Adams spectral sequence

Eva Belmont (MIT)

Abstract: The Adams spectral sequence is one of the central tools for calculating the stable homotopy groups of spheres, one of the motivating problems in stable homotopy theory. In this talk, I will discuss an approach for computing the Adams E_2 page at p = 3 in an infinite region, by computing its localization by the non-nilpotent element b_{10}. This approach relies on computing an analogue of the Adams spectral sequence in Palmieri's stable category of comodules, which can be regarded as an algebraic analogue of stable homotopy theory. This computation fits in the framework of chromatic homotopy theory in the stable category of comodules.

Friday, February 2, 2018

4:00 pm in 241 Altgeld Hall,Friday, February 2, 2018

Integrable systems in algebraic geometry

Matej Penciak (UIUC)

Abstract: In this talk I'll introduce the definition of an algebraic integrable system. The definition axiomatizes what it means to have an integrable system in algebraic geometry. After connecting the definition to the more common notion in differential geometry, I'll give a few examples of my favorite integrable systems. Possible examples are the Hitchin system on the space of Higgs bundles, the Calogero-Moser system, the Toda lattice hierarchy, and, if time permits, I'll try to give a hint of how all these systems are related via the gauge theory in physics.

Friday, February 9, 2018

4:00 pm in 241 Altgeld Hall,Friday, February 9, 2018

What are spectra?

Tsutomu Okano (UIUC)

Abstract: This is an introductory talk on stable homotopy theory. I will begin by discussing stable phenomena in homotopy theory that led to the definition of spectra. Spectra represent generalized cohomology theories, such as various kinds of K-theories and cobordism theories. This implies that results about cohomology theories can be proven in the category of spectra, using analogies from topological spaces. Unfortunately, the earlier category of spectra was defective in formal properties and it was not until the 1990's that suitable categories of spectra were defined. This formality leads to the study of other sorts of homotopy theories, such equivariant and motivic homotopy theories.

Tuesday, February 13, 2018

11:00 am in 345 Altgeld Hall,Tuesday, February 13, 2018

Factorization homology and topological Hochschild cohomology of Thom spectra

Inbar Klang (Stanford)

Abstract: By a theorem of Lewis, the Thom spectrum of an n-fold loop map to BO is an E_n-ring spectrum. I will discuss a project studying the factorization homology and the E_n topological Hochschild cohomology of such Thom spectra, and talk about some applications, such as computations, and a duality between topological Hochschild homology and cohomology of certain Thom spectra. Time permitting, I will discuss connections to topological field theories. This talk will include an introduction to factorization homology via labeled configuration spaces.

Friday, February 16, 2018

4:00 pm in 241 Altgeld Hall,Friday, February 16, 2018



Wednesday, February 21, 2018

12:00 pm in 443 Altgeld Hall,Wednesday, February 21, 2018

Bounding Betti numbers of patchworked real hypersurfaces by Hodge numbers

Kristin Shaw (MPI Leipzig)

Abstract: The Smith-Thom inequality bounds the sum of the Betti numbers of a real algebraic variety by the sum of the Betti numbers of its complexification. In this talk I will explain our proof of a conjecture of Itenberg which refines this bound for a particular class of real algebraic projective hypersurfaces in terms of the Hodge numbers of its complexification. The real hypersurfaces we consider arise from Viro’s patchworking construction, which is a powerful combinatorial method for constructing topological types of real algebraic varieties. To prove the bounds conjectured by Itenberg, we develop a real analogue of tropical homology and use spectral sequences to compare it to the usual tropical homology of Itenberg, Katzarkov, Mikhalkin, Zharkov. Their homology theory gives the Hodge numbers of a complex projective variety from its tropicalisation. Lurking in the spectral sequences of the proof are the keys to controlling the topology of the real hypersurface produced from a patchwork. This is joint work in preparation with Arthur Renaudineau.

Friday, February 23, 2018

4:00 pm in 241 Altgeld Hall,Friday, February 23, 2018

Unoriented Bordism and the Algebraic Geometry of Homotopy Theory

Brian Shin (UIUC)

Abstract: The classification of manifolds up to bordism is an interesting geometric problem. In this talk, I will discuss how this problem connects to homotopy theory. In particular, I will demonstrate that viewing the homotopy theorist's toolbox through the lens of algebraic geometry leads naturally to the solution for the classification of manifolds up to bordism.

Tuesday, March 6, 2018

11:00 am in Psychology Building 21,Tuesday, March 6, 2018

The generalized homology of $BU\langle 2k\rangle$

Phillip Jedlovec

Abstract: In their 2001 paper, ``Elliptic spectra, the Witten genus and the theorem of the cube,'' Ando, Hopkins, and Strickland use an algebro-geometric perspective to give a partial description of the generalized homology of the connective covers of BU. For any complex-orientable cohomology theory, E, they define homology elements $b_{i_1, ..., i_k}$ in $E_*BU\langle 2k\rangle$, prove the so called ``cocycle relations'' and ``symmetry relations'' on these elements, and show that when $E=H\mathbb{Q}$ or $k=1, 2,$ or $3$, these are in fact the defining relations for $E_*BU\langle 2k\rangle$. In this talk, I will sketch a new proof of these results which uses very little algebraic geometry, but instead uses facts about Hopf rings and the work of Ravenel and Wilson on the homology of the spaces in the $\Omega$-spectrum for Brown-Peterson cohomology. Time permitting, I will also discuss how this approach might be used to prove the Ando-Hopkins-Strickland theorem for $k>3$ and $E=H\mathbb{Z}_{(2)}$.

Friday, March 9, 2018

4:00 pm in 241 Altgeld Hall,Friday, March 9, 2018


Friday, March 16, 2018

4:00 pm in 241 Altgeld Hall,Friday, March 16, 2018

Operations in complex K theory

William Balderrama (UIUC)

Abstract: In nice cases, the correct algebraic setup can exert a large amount of control over a geometric situation. I will illustrate this with the example of complex K theory.

Friday, March 30, 2018

4:00 pm in 241 Altgeld Hall,Friday, March 30, 2018

Optimizing mesh quality

Sarah Mousley (UIUC)

Abstract: I will talk about a project in computational geometry I worked on during a summer internship at Sandia National Lab. Our work builds on that of Mullen et al., who introduced a new energy function for meshes (triangulations) and an algorithm for finding low energy meshes. The energy is a measure of the mesh’s quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. While the motivation for this work is to obtain better solutions to PDEs, do not be turned off. I didn't solve a single PDE all summer. This is a geometry talk.

Monday, April 2, 2018

4:00 pm in 245 Altgeld Hall,Monday, April 2, 2018

Why topology is geometry in dimension 3

Nathan Dunfield   [email] (Department of Mathematics, University of Illinois at Urbana-Champaign)

Abstract: After setting the stage by sketching a few facts about the topology and geometry of surfaces, I will explain why the study of the topology of 3-dimensional manifolds is inextricably linked to the study of homogenous geometries such as Euclidean, spherical, and (especially) hyperbolic geometry. This perspective, introduced by Thurston in the 1980s, was stunningly confirmed in the early 2000s by Perelman's deep work using geometric PDEs, and lead to the solution of the 100 year-old Poincaré conjecture. I will hint at how this perspective brings other areas of mathematics, specifically algebraic geometry and number theory, to bear on problems that initially appear purely topological in nature, and conclude with a live computer demonstration of how geometry can be used to tell different 3-manifolds apart in practice.

Friday, April 13, 2018

4:00 pm in 241 Altgeld Hall,Friday, April 13, 2018

What is group cohomology?

Elizabeth Tatum (UIUC)

Abstract: Group cohomology has many uses in algebra, topology, and number theory. In this talk, I will introduce group cohomology, give some basic examples, and discuss some applications to topology.

Tuesday, April 17, 2018

11:00 am in 345 Altgeld Hall,Tuesday, April 17, 2018

About Bredon motivic cohomology of a field

Mircea Voineagu

Abstract: We introduce Bredon motivic cohomology and show that complexes of equivariant equidimensional cycles compute this cohomology. We use this and other methods to identify the Bredon motivic cohomology of a field in weight 0 and 1 as well as the Bredon motivic cohomology of the field of complex numbers. This is a joint work with J. Heller and P.A. Ostvaer.

Friday, April 20, 2018

4:00 pm in 241 Altgeld Hall,Friday, April 20, 2018

The Volume Conjecture

Xinghua Gao (UIUC)

Abstract: It is a fundamental goal of modern knot theory to “understand” the Jones polynomial. The volume conjecture, which was initially formulated by Kashaev and later generalized by Murakami^2, relates quantum invariants of knots to the hyperbolic geometry of knot complements. In this talk, I will briefly explain the volume conjecture. No background in knot theory/hyperbolic geometry/physics required.

Wednesday, April 25, 2018

4:00 pm in 245 Altgeld Hall,Wednesday, April 25, 2018

Randomness in 3-Dimensional Geometry and Topology

Malik Obeidin (Illinois Math)

Abstract: Coming soon!