Department of

August 2018 September 2018 October 2018 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 1 1 2 3 4 5 6 5 6 7 8 9 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13 12 13 14 15 16 17 18 9 10 11 12 13 14 15 14 15 16 17 18 19 20 19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27 26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31 30

Tuesday, September 11, 2018

**Abstract:** This is a talk about an algebraic notion of a plethory. A plethory P determines a category of "P-rings", objects of which are commutative rings R equipped with a collection of functions $f_i : R \to R$ satisfying a list of axioms. Many interesting cohomology theories take values in a category of P-rings for some plethory P. The motivating example is K-theory, which takes values in "Lambda-rings", which is precisely the category of rings for the Lambda plethory. This talk will be expository, concentrating first on interesting examples of P-rings, then working backward to the definition of plethory. Then I'll talk about the "Witt ring" construction associated to any plethory, which includes and generalizes the classical construction of "Witt vectors".