Department of

Mathematics


Seminar Calendar
for Graduate Geometry and Topology Seminar events the year of Friday, September 14, 2018.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
     August 2018           September 2018          October 2018    
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
           1  2  3  4                      1       1  2  3  4  5  6
  5  6  7  8  9 10 11    2  3  4  5  6  7  8    7  8  9 10 11 12 13
 12 13 14 15 16 17 18    9 10 11 12 13 14 15   14 15 16 17 18 19 20
 19 20 21 22 23 24 25   16 17 18 19 20 21 22   21 22 23 24 25 26 27
 26 27 28 29 30 31      23 24 25 26 27 28 29   28 29 30 31         
                        30                                         

Friday, September 7, 2018

4:00 pm in Altgeld Hall 241,Friday, September 7, 2018

A generalization of pair of pants decompositions

Jesse Huang (UIUC)

Abstract: We will talk about higher dimensional pair of pants decompositions for smooth projective hypersurfaces.

Friday, September 14, 2018

4:00 pm in 241 Altgeld Hall,Friday, September 14, 2018

3 invariants of manifolds you won’t believe are the same!

Hadrian Quan

Abstract: We’ll start by discussing everyone’s favorite invariant: the determinant of a linear map. After generalizing this to an invariant of a chain complex, we’ll talk about three different different ways to get a number from a representation of $\pi_1(M)$: topological, analytic, and dynamical. Number 3 might surprise you!

Friday, September 21, 2018

4:00 pm in 241 Altgeld Hall,Friday, September 21, 2018

The geometry of some low dimensional Lie groups

Ningchuan Zhang (UIUC)

Abstract: In this talk, I'll give explicit geometric descriptions of some low dimensional matrix groups. The goal is to show $\mathrm{SU}(2)\simeq S^3$ is a double cover of $\mathrm{SO}(3)$ and $\mathrm{SL}_2(\mathbb{C})$ is a double cover of the Lorentz group $\mathrm{SO}^+(1,3)$. Only basic knowledge of linear algebra and topology is assumed.