Department of

September 2018 October 2018 November 2018 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 1 2 3 4 5 6 1 2 3 2 3 4 5 6 7 8 7 8 9 10 11 12 13 4 5 6 7 8 9 10 9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15 16 17 16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24 23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29 30 30

Tuesday, October 2, 2018

**Abstract:** The smooth version of the 4-dimensional Poincare Conjecture (S4PC) states that every homotopy 4-sphere is diffeomorphic to the standard 4-sphere. One way to attack the S4PC is to examine a restricted class of 4-manifolds. For example, Gabai's proof of Property R implies that every homotopy 4-sphere built with one 2-handle and one 3-handle is standard. In this talk, we consider homotopy 4-spheres X built with two 2-handles and two 3-handles, which are uniquely determined by the attaching link L for the 2-handles in the 3-sphere. We prove that if one of the components of L is the connected sum of a torus knot T(p,2) and its mirror (a generalized square knot), then X is diffeomorphic to the standard 4-sphere. This is joint work with Jeffrey Meier.