Department of

September 2018 October 2018 November 2018 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 1 2 3 4 5 6 1 2 3 2 3 4 5 6 7 8 7 8 9 10 11 12 13 4 5 6 7 8 9 10 9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15 16 17 16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24 23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29 30 30

Monday, October 15, 2018

**Abstract:** In this talk, I’ll explain the relation between congruence and (continuous) group cohomology of $\mathbb{Z}_p^\times$-representations in invertible $\mathbb{Z}_p$-modules. The first half of the talk will focus on explicit computations of the two sides (including the $p=2$ case). In the second half, the connection between congruence and group cohomology will be built using the chromatic resolution (Cousin complex) of the $\mathbb{Z}_p^\times$-representations. The discussion here also applies to open subgroups of $\mathbb{Z}_p^\times$.