Department of

November 2018December 2018 January 2019 Su Mo Tu We ThFrSa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 1 2 3 4 5 4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12 11 12 13 14 151617 9 10 11 12 13 14 15 13 14 15 16 17 18 19 18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26 25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30 31 30 31

Tuesday, December 4, 2018

**Abstract:** We consider the initial-value problem for the derivative nonlinear Schrödinger equation (DNLS) on the real line. We implement an infinite iteration of normal form reductions (namely, integration by parts in time) and reformulate a gauge-equivalent equation in terms of an infinite series of multilinear terms. This allows us to show the unconditional uniqueness of solutions to DNLS in an almost end-point space. This is joint work with Haewon Yoon (National Taiwan University).