Department of

Mathematics


Seminar Calendar
for Mathematics Colloquium events the year of Friday, January 11, 2019.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
    December 2018           January 2019          February 2019    
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
                    1          1  2  3  4  5                   1  2
  2  3  4  5  6  7  8    6  7  8  9 10 11 12    3  4  5  6  7  8  9
  9 10 11 12 13 14 15   13 14 15 16 17 18 19   10 11 12 13 14 15 16
 16 17 18 19 20 21 22   20 21 22 23 24 25 26   17 18 19 20 21 22 23
 23 24 25 26 27 28 29   27 28 29 30 31         24 25 26 27 28      
 30 31                                                             

Friday, February 15, 2019

4:00 pm in 245 Altgeld Hall,Friday, February 15, 2019

Harry Potter's Cloak Via Transformation Optics

Gunther Uhlmann (University of Washington)

Abstract: Can we make objects invisible? This has been a subject of human fascination for millennia in Greek mythology, movies, science fiction, etc. including the legend of Perseus versus Medusa and the more recent Star Trek and Harry Potter. In the last fifteen years or so there have been several scientific proposals to achieve invisibility. We will introduce in a non-technical fashion one of them, the so-called "transformation optics" which has received a lot of attention in the scientific community.

Monday, February 18, 2019

4:00 pm in 245 Altgeld Hall,Monday, February 18, 2019

Cohomology of Shimura Varieties

Sug Woo Shin (University of California Berkeley)

Abstract: Shimura varieties are a certain class of algebraic varieties over number fields with lots of symmetries, introduced by Shimura and Deligne nearly half a century ago. They have been playing a central role in number theory and other areas. Langlands proposed a program to compute the L-functions and cohomology of Shimura varieites in 1970s; this was refined by Langlands-Rapoport and Kottwitz in 1980s. I will review some old and recent results in this direction.

Wednesday, February 20, 2019

4:00 pm in 245 Altgeld Hall,Wednesday, February 20, 2019

Some necessary uses of logic in mathematics

Ilijas Farah (York University)

Abstract: Every now and then, a difficult mathematical problem turns out to be difficult for a particularly objective reason: Provably, it cannot be solved by using 'conventional' means. Some classical examples are proving the Continuum Hypothesis, trisecting an angle, and solving the quintic equation. I’ll discuss more recent examples of such problems, giving some emphasis to the problems arising from the study of operator algebras.

Thursday, February 28, 2019

4:00 pm in 245 Altgeld Hall,Thursday, February 28, 2019

Quivers, representation theory and geometry

Kevin McGerty (University of Oxford and Visiting Fisher Professor, University of Illinois)

Abstract: A quiver is an oriented graph. It has a natural algebra associated to it called the path algebra, which as the name suggests has a basis given by paths in the quiver with multiplication given by concatenation. The representation theory of these algebras encompasses a number of classical problems in linear algebra, for example subspace arrangements and Jordan canonical form. A remarkable discovery of Gabriel however in the 1970s revealed a deep connection between these algebras and Lie theory, which has subsequently lead to a rich interaction between quivers, Lie theory and algebraic geometry. This talk will begin by outlining the elementary theory of representations of path algebras, explain Gabriel's result and survey some of the wonderful results which it has led to in Lie theory: the discovery of the canonical bases of quantum groups, the geometric realization of representations of affine quantum groups by Nakajima, and most recently deep connections between representations of symplectic reflection algebras and affine Lie algebras.

Thursday, March 7, 2019

4:00 pm in 245 Altgeld Hall,Thursday, March 7, 2019

New examples of Calabi-Yau metrics on a complex vector space

Frederic Rochon (University of Quebec in Montreal)

Abstract: After reviewing how the Riemann curvature tensor describes the local geometry of a space and how it may reflect some global aspects of its topology, we will focus on a special type of geometry: Calabi-Yau manifolds. By smoothing singular Calabi-Yau cones and using suitable compactifications by manifolds with corners, we will explain how to construct new examples of complete Calabi-Yau metrics on a complex vector space. Our examples are of Euclidean volume growth, but with tangent cone at infinity having a singular cross-section. This is a joint work with Ronan J. Conlon.

Thursday, March 28, 2019

4:00 pm in 245 Altgeld Hall,Thursday, March 28, 2019

Spherical conical metrics

Xuwen Zhu (University of California Berkeley)

Abstract: The problem of finding and classifying constant curvature metrics with conical singularities has a long history bringing together several different areas of mathematics. This talk will focus on the particularly difficult spherical case where many new phenomena appear. When some of the cone angles are bigger than $2\pi$, uniqueness fails and existence is not guaranteed; smooth deformation is not always possible and the moduli space is expected to have singular strata. I will give a survey of several recent results regarding this singular uniformization problem, connecting PDE techniques with complex analysis and synthetic geometry. Based on joint works with Rafe Mazzeo and Bin Xu.

Tuesday, April 9, 2019

4:00 pm in 314 Altgeld Hall,Tuesday, April 9, 2019

Recent progress on existence of minimal surfaces

André Neves (University of Chicago)

Abstract: The Tondeur Memorial Lectures will be given by Andre Neves (University of Chicago), April 9-11, 2019. Following this lecture, a reception will be held in 239 Altgeld Hall.

A long standing problem in geometry, conjectured by Yau in 1982, is that any any $3$-manifold admits an infinite number of distinct minimal surfaces. The analogous problem for geodesics on surfaces led to the discovery of deep interactions between dynamics, topology, and analysis. The last couple of years brought dramatic developments to Yau’s conjecture, which has now been settled due to the work of Marques-Neves and Song. In the first talk I will survey the history of the problem and the several contributions made. In the second talk I will talk about the Weyl law for the volume spectrum (Marques-Neves-Liokumovich) and how it can be used to prove denseness and equidistribution of minimal surfaces in the generic case (Irie-Marques-Neves and Marques-Neves-Song). In the third talk I will survey the recent breakthroughs due to Song, Zhou, and Mantoulidis-Chodosh.

Bio Note: André Neves is a leading figure in geometric analysis with important contributions ranging from the Yamabe problem to geometric flows. Jointly with Fernando Marques, he transformed the field by introducing new ideas and techniques that led to the solution of several open problems which were previously out of reach. Together or with coauthors, they solved the Willmore conjecture, the Freedman-He-Wang conjecture in knot theory and Yau’s conjecture on the existence of minimal surfaces in the generic case.

Neves received his PhD from Stanford University in 2005 under the supervision of Richard Schoen. He was a postdoctoral fellow and assistant professor at Princeton University, before joining the Imperial College of London in 2011, where he became a full professor. He joined the faculty of the University of Chicago in 2016. Among his many awards and recognitions, Neves was awarded the Philip Leverhulme Prize in 2012, the LMS Whitehead Prize in 2013, he was invited speaker at ICM in Seoul in 2014, received a New Horizons in Mathematics Prize in 2015, and the 2016 Oswald Veblen Prize in Geometry. In 2018, he received a Simons Investigator Award.

Wednesday, April 10, 2019

4:00 pm in 245 Altgeld Hall,Wednesday, April 10, 2019

Recent progress on existence of minimal surfaces

André Neves (University of Chicago)

Abstract: A long standing problem in geometry, conjectured by Yau in 1982, is that any any $3$-manifold admits an infinite number of distinct minimal surfaces. The analogous problem for geodesics on surfaces led to the discovery of deep interactions between dynamics, topology, and analysis. The last couple of years brought dramatic developments to Yau’s conjecture, which has now been settled due to the work of Marques-Neves and Song. In the first talk I will survey the history of the problem and the several contributions made. In the second talk I will talk about the Weyl law for the volume spectrum (Marques-Neves-Liokumovich) and how it can be used to prove denseness and equidistribution of minimal surfaces in the generic case (Irie-Marques-Neves and Marques-Neves-Song). In the third talk I will survey the recent breakthroughs due to Song, Zhou, and Mantoulidis-Chodosh.

Bio Note: André Neves is a leading figure in geometric analysis with important contributions ranging from the Yamabe problem to geometric flows. Jointly with Fernando Marques, he transformed the field by introducing new ideas and techniques that led to the solution of several open problems which were previously out of reach. Together or with coauthors, they solved the Willmore conjecture, the Freedman-He-Wang conjecture in knot theory and Yau’s conjecture on the existence of minimal surfaces in the generic case.

Neves received his PhD from Stanford University in 2005 under the supervision of Richard Schoen. He was a postdoctoral fellow and assistant professor at Princeton University, before joining the Imperial College of London in 2011, where he became a full professor. He joined the faculty of the University of Chicago in 2016. Among his many awards and recognitions, Neves was awarded the Philip Leverhulme Prize in 2012, the LMS Whitehead Prize in 2013, he was invited speaker at ICM in Seoul in 2014, received a New Horizons in Mathematics Prize in 2015, and the 2016 Oswald Veblen Prize in Geometry. In 2018, he received a Simons Investigator Award.

Thursday, April 11, 2019

4:00 pm in 245 Altgeld Hall,Thursday, April 11, 2019

Recent progress on existence of minimal surfaces

André Neves (University of Chicago)

Abstract: A long standing problem in geometry, conjectured by Yau in 1982, is that any any $3$-manifold admits an infinite number of distinct minimal surfaces. The analogous problem for geodesics on surfaces led to the discovery of deep interactions between dynamics, topology, and analysis. The last couple of years brought dramatic developments to Yau’s conjecture, which has now been settled due to the work of Marques-Neves and Song. In the first talk I will survey the history of the problem and the several contributions made. In the second talk I will talk about the Weyl law for the volume spectrum (Marques-Neves-Liokumovich) and how it can be used to prove denseness and equidistribution of minimal surfaces in the generic case (Irie-Marques-Neves and Marques-Neves-Song). In the third talk I will survey the recent breakthroughs due to Song, Zhou, and Mantoulidis-Chodosh.

Bio Note: André Neves is a leading figure in geometric analysis with important contributions ranging from the Yamabe problem to geometric flows. Jointly with Fernando Marques, he transformed the field by introducing new ideas and techniques that led to the solution of several open problems which were previously out of reach. Together or with coauthors, they solved the Willmore conjecture, the Freedman-He-Wang conjecture in knot theory and Yau’s conjecture on the existence of minimal surfaces in the generic case.

Neves received his PhD from Stanford University in 2005 under the supervision of Richard Schoen. He was a postdoctoral fellow and assistant professor at Princeton University, before joining the Imperial College of London in 2011, where he became a full professor. He joined the faculty of the University of Chicago in 2016. Among his many awards and recognitions, Neves was awarded the Philip Leverhulme Prize in 2012, the LMS Whitehead Prize in 2013, he was invited speaker at ICM in Seoul in 2014, received a New Horizons in Mathematics Prize in 2015, and the 2016 Oswald Veblen Prize in Geometry. In 2018, he received a Simons Investigator Award.

Thursday, April 18, 2019

4:00 pm in 245 Altgeld Hall,Thursday, April 18, 2019

The many aspects of Schubert polynomials

Karola Mészáros (Cornell University)

Abstract: Schubert polynomials, introduced by Lascoux and Schützenberger in 1982, represent cohomology classes of Schubert cycles in flag varieties. While there are a number of combinatorial formulas for Schubert polynomials, their supports have only recently been established and the values of their coefficients are not well understood. We show that the Newton polytope of a Schubert polynomial is a generalized permutahedron and explain how to obtain certain Schubert polynomials as projections of integer point transforms of polytopes. The latter generalizes the well-known relationship between Schur functions and Gelfand-Tsetlin polytopes. We will then turn to the study of the coefficients of Schubert polynomials and show that Schubert polynomials with all coefficients at most $k$, for any positive integer $k$, are closed under pattern containment. We also characterize zero-one Schubert polynomials by a list of twelve avoided patterns. This talk is based on joint works with Alex Fink, Ricky Liu and Avery St. Dizier.