Department of


Seminar Calendar
for events the day of Tuesday, January 22, 2019.

events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
    December 2018           January 2019          February 2019    
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
                    1          1  2  3  4  5                   1  2
  2  3  4  5  6  7  8    6  7  8  9 10 11 12    3  4  5  6  7  8  9
  9 10 11 12 13 14 15   13 14 15 16 17 18 19   10 11 12 13 14 15 16
 16 17 18 19 20 21 22   20 21 22 23 24 25 26   17 18 19 20 21 22 23
 23 24 25 26 27 28 29   27 28 29 30 31         24 25 26 27 28      
 30 31                                                             

Tuesday, January 22, 2019

1:00 pm in 347 Altgeld Hall,Tuesday, January 22, 2019

Singular limits of sign-changing weighted eigenproblems

Derek Kielty   [email] (Illinois Math)

Abstract: Eigenvalue problems with positive weights are related to heat flow and wave propagation in inhomogeneous media. Sign-changing weights have ecological interpretations, and generate spectra that accumulate at both positive and negative infinity. This talk will discuss recent results on limits of such eigenvalue problems when a negative portion of the weight is made arbitrarily large.

1:00 pm in Altgeld Hall,Tuesday, January 22, 2019

A Homotopical View of Lascar Groups of First-Order Theories

Greg Cousins (Notre Dame)

Abstract: In this talk, we will discuss how the Lascar group of a first-order theory, $T$, can be recovered as the fundamental group(-oid) of a certain space associated to the category of models, $Mod(T)$. We will then discuss some examples illustrating how tools from algebraic topology can be used to compute the Lascar group of a theory. Time permitting, we will discuss generalizations to the context of AECs and questions their higher homotopy. No knowledge of homotopy theory will be assumed. This is joint work with Tim Campion and Jinhe Ye.

2:00 pm in 243 Altgeld Hall,Tuesday, January 22, 2019

Ordered and convex geometric trees with linear extremal function

Alexandr Kostochka (Illinois Math)

Abstract: The extremal functions $\text{ex}_{\rightarrow}(n,F)$ and $\text{ex}_{\circ}(n,F)$ for ordered and convex geometric acyclic graphs $F$ have been extensively investigated by a number of researchers. Basic questions are to determine when $\text{ex}_{\rightarrow}(n,F)$ and $\text{ex}_{\circ}(n,F)$ are linear in $n$, the latter posed by Brass-Károlyi-Valtr in 2003. In this talk, we answer both these questions for every tree $F$.

We give a forbidden subgraph characterization for a family $\mathcal{ T}$ of ordered trees with $k$ edges, and show that $\text{ex}_{\rightarrow}(n,T) = (k - 1)n - {k \choose 2}$ for all $n \geq k + 1$ when $T \in {\mathcal T}$ and $\text{ex}_{\rightarrow}(n,T) = \Omega(n\log n)$ for $T \not\in {\mathcal T}$. We also describe the family ${\mathcal T}'$ of the convex geometric trees with linear Turán number and show that for every convex geometric tree $F\notin {\mathcal T}'$, $\text{ex}_{\circ}(n,F)= \Omega(n\log \log n)$.

This is joint work with Zoltan Füredi, Tao Jiang, Dhruv Mubayi and Jacques Verstraëte.

4:00 pm in 343 Altgeld Hall,Tuesday, January 22, 2019

Organizational Meeting

George Francis (University of Illinois/Urbana)

Abstract: Kay Kirkpatrick and George Francis invite you to join this seminar on machine learning (ML). It will be more of a mathematical learning collective than a show-and-tell venue. It meets in 243AH on Tuesdays at 4pm except when departmental events (colloquia, MSS and named lectures, spring departmental meeting) are held. Faculty, students, staff, and visitors are welcome. Our goal is to read and ponder papers, and ask each other many more questions than we expect to answer. For this organizational meeting we plan to collect topics you are interested in, and start a list of papers that might containthe answers. Please bring references to papers or websites you would like to study, either actively or passively. This way we might be able to come up with a tentative schedule of events.