Department of

January 2019February 2019March 2019 Su Mo Tu We Th Fr Sa Su MoTuWe Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16 20 21 22 23 24 25 26 17 181920 21 22 23 17 18 19 20 21 22 23 27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30 31

Monday, February 11, 2019

**Abstract:** I will discuss a result stating that a compact, Hausdorff, Lie groupoid is rigid. i.e., has no non-trivial deformations. As an application of this result, it follows that a compact, Hausdorff foliation is rigid if and only if the generic leaf has trivial 1st cohomology. This is closely related to old stability results for foliations due to Epstein, Rosenberg and Hamilton. This talk is based on joint work with Matias del Hoyo.