Department of

Mathematics


Seminar Calendar
for Graduate Geometry/Topology Seminar events the year of Monday, February 11, 2019.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
     January 2019          February 2019            March 2019     
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
        1  2  3  4  5                   1  2                   1  2
  6  7  8  9 10 11 12    3  4  5  6  7  8  9    3  4  5  6  7  8  9
 13 14 15 16 17 18 19   10 11 12 13 14 15 16   10 11 12 13 14 15 16
 20 21 22 23 24 25 26   17 18 19 20 21 22 23   17 18 19 20 21 22 23
 27 28 29 30 31         24 25 26 27 28         24 25 26 27 28 29 30
                                               31                  

Friday, January 18, 2019

4:00 pm in 141 Altgeld Hall,Friday, January 18, 2019

Organizational Meeting

Nachiketa Adhikari (UIUC)

Abstract: We will draft a schedule of the seminar talks this semester. Please join us and sign up if you want to speak (you don't have to decide on a topic or abstract now). As usual, there will be cookies. All are welcome!

Friday, January 25, 2019

4:00 pm in 141 Altgeld Hall,Friday, January 25, 2019

Symmetric functions and Hilbert schemes

Joshua Wen (UIUC)

Abstract: One source of applications of geometric and topological methods to combinatorics and representation theory is to proving various numbers are positive integers by showing that said numbers are dimensions of some vector space. A big example of this from more than a decade ago is Haiman’s proof of the Macdonald positivity conjecture, which further cemented an already tight connection between symmetric functions and the topology of Hilbert schemes of points in $\mathbb{C}^2$. I want to go through this story while highlighting two lessons that nobody taught me in grad school—that generating series are awesome for geometers and how to do geometry on a moduli space.

Friday, February 1, 2019

4:00 pm in 145 Altgeld Hall,Friday, February 1, 2019

Vector fields on Spheres

Brian Shin (UIUC)

Abstract: In this talk, I would like to tell the story of one of the classical problems in topology: how many pointwise linearly independent vector fields can you put on a sphere of dimension $n$. The famous Hairy Ball Theorem tells us that there are none if $n$ is even. On the other hand, if $n$ is one of 1, 3, or 7, we can construct $n$ such vector fields using the normed divison $\mathbb{R}$-algebra structures on complex numbers, quaternions, and octonions. In this talk, we'll discuss the complete resolution of this problem by Adams, using methods of geometry, algebra, and homotopy theory along the way.

Friday, February 8, 2019

4:00 pm in 145 Altgeld Hall,Friday, February 8, 2019

Hamiltonian Lie algebroids

Luka Zwaan (UIUC)

Abstract: Hamiltonian Lie algebroids were introduced quite recently by Blohmann and Weinstein, resulting from their work in general relativity. They are a generalisation of the usual notion of a Hamiltonian action of a Lie algebra on a presymplectic manifold to arbitrary Lie algebroids. In this talk, I will quickly recall this usual notion, and then discuss several ways Blohmann and Weinstein tried to generalise it. In the end, the most convenient method makes use of a choice of connection on the Lie algebroid.

Friday, February 15, 2019

4:00 pm in Altgeld Hall 145 ,Friday, February 15, 2019

Laplacian Operator and Hyperbolic Geometry

Xiaolong Han (Illinois Math)

Abstract: The Laplacian operator acting on functions on a Riemannian manifold is an analytic operator invariant under isometry of the manifold. Its spectrum encodes much geometric information of the manifold. In this talk, I will start with some basic properties of Laplacian operator and hyperbolic geometry. Then I will talk about how these two interact with each other. Time permitting, I will talk about some of my recent works. No background on Laplacian operator or hyperbolic geometry is assumed.

Friday, February 22, 2019

4:00 pm in 145 Altgeld Hall,Friday, February 22, 2019

27 lines on smooth cubic surfaces

Ningchuan Zhang (UIUC)

Abstract: In this talk, I will show that there are $27$ projective lines on a smooth cubic surface in $\mathbb{CP}^3$ by a Chern class computation. This talk is based on a course project I did with Professor Sheldon Katz in Math 524 (now 514) in Spring 2015. No knowledge of algebraic geometry or characteristic classes is assumed.