Department of

January 2019 February 2019 March 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23 27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30 31

Thursday, February 14, 2019

**Abstract:** When geometric structures on surfaces are determined by the lengths of curves, it is natural to ask which curves’ lengths do we really need to know? It is a classical result of Fricke that a hyperbolic metric on a surface is determined by its marked simple length spectrum. More recently, Duchin–Leininger–Rafi proved that a flat metric induced by a unit-norm quadratic differential is also determined by its marked simple length spectrum. In this talk, I will describe a generalization of the notion of simple curves to that of q-simple curves, for any positive integer q, and show that the lengths of q-simple curves suffice to determine a non-positively curved Euclidean cone metric induced by a q-differential metric.