Department of

January 2019 February 2019March 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa 1 2 3 4 5 1 2 1 2 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 202122 23 27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30 31

Tuesday, February 19, 2019

**Abstract:** Factorization algebras are a mathematical tool used to encode the data of the observables of a field theory. There are various notions of factorization algebra: one can define a factorization algebra on the open subsets of some fixed manifold; or alternatively, one can define a factorization algebra on the site of all manifolds of a given dimension with specified geometric structure. In this talk I will outline a comparison between two such notions: G-equivariant factorization algebras on a fixed model space M and factorization algebras on the site of all manifolds quipped with a (G, M)-structure (given by an atlas of charts in M and transition maps in G). I will introduce the definitions of these two concepts and then sketch the proof of their equivalence as (\infy,1)-categories.