Department of

January 2019 February 2019March 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa 1 2 3 4 5 1 2 1 2 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9 13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16 20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 202122 23 27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30 31

Thursday, February 21, 2019

**Abstract:** A group G is called left-orderable if there exists a strict total order on G which is invariant under the left-multiplication. Given an irreducible 3-manifold M, it is conjectured that the fundamental group of the 3-manifold is left-orderable if and only if M admits a co-orientable taut foliation. In this talk, we will discuss the left-orderability of the fundamental groups of 3-manifolds that admit co-orientable taut foliations.