Department of

Mathematics


Seminar Calendar
for Model Theory and Descriptive Set Theory Seminar events the year of Tuesday, February 19, 2019.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
     January 2019          February 2019            March 2019     
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
        1  2  3  4  5                   1  2                   1  2
  6  7  8  9 10 11 12    3  4  5  6  7  8  9    3  4  5  6  7  8  9
 13 14 15 16 17 18 19   10 11 12 13 14 15 16   10 11 12 13 14 15 16
 20 21 22 23 24 25 26   17 18 19 20 21 22 23   17 18 19 20 21 22 23
 27 28 29 30 31         24 25 26 27 28         24 25 26 27 28 29 30
                                               31                  

Friday, February 8, 2019

4:00 pm in 345 Altgeld Hall,Friday, February 8, 2019

"The complexity of topological group isomorphism" by A. Kechris, A. Nies, and K. Tent (Part 1)

Anush Tserunyan (UIUC)

Abstract: This will be the introductory talk of the series on the paper in the title [arXiv link], which deals with the classification of some natural classes of non-Archimedean groups (= closed subgroups of S) up to topological group isomorphism. It gives a general criterion for a class of non-Archimedean groups to show that the topological group isomorphism on it is Borel-classifiable by countable structures. This criterion is satisfied by the classes of profinite groups, locally compact non-Archimedean groups, and oligomorphic groups.

Friday, February 15, 2019

3:00 pm in 341 Altgeld Hall ,Friday, February 15, 2019

Note the time and room change!

"The complexity of topological group isomorphism" by A. Kechris, A. Nies, and K. Tent (Part 2)

Jenna Zomback (UIUC)

Abstract: This will be the second talk of the series on the paper in the title [arXiv link], which deals with the classification of some natural classes of non-Archimedean groups (= closed subgroups of S) up to topological group isomorphism. It gives a general criterion for a class of non-Archimedean groups to show that the topological group isomorphism on it is Borel-classifiable by countable structures. This criterion is satisfied by the classes of profinite groups, locally compact non-Archimedean groups, and oligomorphic groups. In this talk, we will fill in some proofs left out last time and prove this general criterion.

Friday, February 22, 2019

4:00 pm in 345 Altgeld Hall ,Friday, February 22, 2019

Cancelled

Friday, March 1, 2019

4:00 pm in 345 Altgeld Hall ,Friday, March 1, 2019

"The complexity of topological group isomorphism" by A. Kechris, A. Nies, and K. Tent (Part 3)

Mary Angelica Gramcko-Tursi (UIUC)

Abstract: This will be the third talk of the series on the paper in the title [arXiv link], which deals with the classification of some natural classes of non-Archimedean groups (= closed subgroups of S) up to topological group isomorphism. It gives a general criterion for a class of non-Archimedean groups to show that the topological group isomorphism on it is Borel-classifiable by countable structures. This criterion is satisfied by the classes of profinite groups, locally compact non-Archimedean groups, and oligomorphic groups. In this talk, we will show that one or two of the aforementioned classes satisfy this criterion.

Friday, March 8, 2019

4:00 pm in 345 Altgeld Hall ,Friday, March 8, 2019

Organizational meeting

Friday, March 15, 2019

4:00 pm in 345 Altgeld Hall ,Friday, March 15, 2019

The theory of addition with predicates for the powers of 2 and 3

Christian Schulz (UIUC Math)

Abstract: This talk concerns the intricate boundary between decidable and undecidable of expansions of Presburger artithmetic, i.e., the structure $(\mathbb{N}, +)$. For a natural number $p \ge 2$, let $p^{\mathbb{N}}$ denote the set of powers of $p$, and let $V_p$ be a predicate that allows us to access the full base-$p$ expansion of a natural number. It is known that the expansion $(\mathbb{N}, +, V_p)$ of Presburger arithmetic retains decidability, but $(\mathbb{N}, +, V_p, q^{\mathbb{N}})$, for $q$ multiplicatively independent from $p$, has an undecidable theory. In this talk, I present a proof that the reduct $(\mathbb{N}, +, p^{\mathbb{N}}, q^{\mathbb{N}})$ also has an undecidable theory, specifically in the case $p = 2$, $q = 3$. I conclude with a note on how the proof extends to other structures, as well as some discussion of directions for further research.