Department of

February 2019 March 2019April 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa 1 2 1 2 1 2 3 4 5 6 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 17 18 19 20 21 22 23 17 18 19 20 21 22 23 21 22 23 242526 27 24 25 26 27 28 24 25 26 27 28 29 30 28 29 30 31

Friday, March 8, 2019

**Abstract:** Given a topological group $G$, we ask whether the group $\overline{\left\langle g \right\rangle}$ has the same isomorphism type for "most" $g \in G$. More precisely, is there a group $H$ such that the set $\left\{ g \in G : \overline{\left\langle g \right\rangle} \cong H \right\}$ is dense? Comeagre? If so, can we identify this $H$? In this expository talk I will discuss known results and conjectures for certain Polish groups. Emphasis will be given to the case when $G$ is the group of Lebesgue-measure preserving automorphisms of the unit interval.