Department of

February 2019 March 2019 April 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 1 2 1 2 3 4 5 6 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 17 18 19 20 21 22 23 17 18 19 20 21 22 23 21 22 23 24 25 26 27 24 25 26 27 28 24 25 26 27 28 29 30 28 29 30 31

Thursday, March 14, 2019

**Abstract:** Fix an elliptic curve $E$ over $\mathbb{Q}$. An ''extremal prime'' for $E$ is a prime $p$ of good reduction such that the number of rational points on $E$ modulo $p$ is maximal or minimal in relation to the Hasse bound. In this talk, I will discuss what is known and conjectured about the number of extremal primes $p\le X$, and give the first non-trivial upper bound for the number of such primes when $E$ is a curve without complex multiplication. The result is conditional on the hypothesis that all the symmetric power $L$-functions associated to $E$ are automorphic and satisfy the Generalized Riemann Hypothesis. In order to obtain this bound, we use explicit equidistribution for the Sato-Tate measure as in recent work of Rouse and Thorner, and refine certain intermediate estimates taking advantage of the fact that extremal primes have a very small Sato-Tate measure.