Department of

Mathematics


Seminar Calendar
for events the day of Friday, March 15, 2019.

     .
events for the
events containing  

(Requires a password.)
More information on this calendar program is available.
Questions regarding events or the calendar should be directed to Tori Corkery.
    February 2019            March 2019             April 2019     
 Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa   Su Mo Tu We Th Fr Sa
                 1  2                   1  2       1  2  3  4  5  6
  3  4  5  6  7  8  9    3  4  5  6  7  8  9    7  8  9 10 11 12 13
 10 11 12 13 14 15 16   10 11 12 13 14 15 16   14 15 16 17 18 19 20
 17 18 19 20 21 22 23   17 18 19 20 21 22 23   21 22 23 24 25 26 27
 24 25 26 27 28         24 25 26 27 28 29 30   28 29 30            
                        31                                         

Friday, March 15, 2019

4:00 pm in 345 Altgeld Hall ,Friday, March 15, 2019

The theory of addition with predicates for the powers of 2 and 3

Christian Schulz (UIUC Math)

Abstract: This talk concerns the intricate boundary between decidable and undecidable of expansions of Presburger artithmetic, i.e., the structure $(\mathbb{N}, +)$. For a natural number $p \ge 2$, let $p^{\mathbb{N}}$ denote the set of powers of $p$, and let $V_p$ be a predicate that allows us to access the full base-$p$ expansion of a natural number. It is known that the expansion $(\mathbb{N}, +, V_p)$ of Presburger arithmetic retains decidability, but $(\mathbb{N}, +, V_p, q^{\mathbb{N}})$, for $q$ multiplicatively independent from $p$, has an undecidable theory. In this talk, I present a proof that the reduct $(\mathbb{N}, +, p^{\mathbb{N}}, q^{\mathbb{N}})$ also has an undecidable theory, specifically in the case $p = 2$, $q = 3$. I conclude with a note on how the proof extends to other structures, as well as some discussion of directions for further research.

4:00 pm in 145 Altgeld Hall,Friday, March 15, 2019

Some aspects of Foliations of 3-manifolds

Gayana Jayasinghe (UIUC)

Abstract: While foliations have proven to be a useful tool for studying the topology and geometry of manifolds, in lower dimensions, they allow one to create and admire extremely beautiful pictures. Renowned masters of this art such as William Thurston and David Gabai have developed a many-layered machinery to manipulate and construct "nice" foliations. I will assume very little knowledge and will introduce the basics, then talk about some things I found interesting. My props will be edible versions of these you can study at your leisure.