Department of

February 2019 March 2019 April 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 1 2 1 2 3 4 5 6 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 17 18 19 20 21 22 23 17 18 19 20 21 22 23 21 22 23 24 25 26 27 24 25 26 27 28 24 25 26 27 28 29 30 28 29 30 31

Tuesday, January 15, 2019

**Abstract:** Hanson, Loten, and Toft proved that every $(2r+1)$-regular graph with at most $2r$ cut-edges has a $2$-factor. We generalize this by proving for $k\le(2r+1)/3$ that every $(2r+1)$-regular graph with at most $2r-3(k-1)$ cut-edges has a $2k$-factor. The restrictions on $k$ and on the number of cut-edges are sharp. We characterize the graphs with exactly $2r-3(k-1)+1$ cut-edges but no $2k$-factor. For $k>(2r+1)/3$, there are graphs without cut-edges that have no $2k$-factor. (Joint work with Alexandr V. Kostochka, Andr\'e Raspaud, Bjarne Toft, and Dara Zirlin.)

We determine the maximum guaranteed size of a $2$-regular subgraph in a $3$-regular $n$-vertex graph. In particular, we prove that every multigraph with maximum degree $3$ and exactly $c$ cut-edges has a $2$-regular subgraph that omits at most $(3n-2m+c-1)/2$ vertices (or $0$ for $3$-regular graphs without cut-edges). The bound is sharp; we describe the extremal multigraphs. (Joint work with Ilkyoo Choi, Ringi Kim, Alexandr V. Kostochka, and Boram Park.)

Tuesday, January 22, 2019

Tuesday, January 29, 2019

Tuesday, February 5, 2019

Tuesday, February 12, 2019

Tuesday, February 19, 2019

Tuesday, February 26, 2019

Tuesday, March 5, 2019

Tuesday, March 12, 2019

Tuesday, March 26, 2019

Tuesday, April 2, 2019

Tuesday, April 9, 2019

Tuesday, April 16, 2019

Tuesday, April 23, 2019

Friday, June 14, 2019