Department of

February 2019 March 2019 April 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 1 2 1 2 3 4 5 6 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 10 11 12 13 10 11 12 13 14 15 16 10 11 12 13 14 15 16 14 15 16 17 18 19 20 17 18 19 20 21 22 23 17 18 19 20 21 22 23 21 22 23 24 25 26 27 24 25 26 27 28 24 25 26 27 28 29 30 28 29 30 31

Thursday, March 28, 2019

**Abstract:** A partition is an $a$-core partition if none of its hook lengths are divisible by $a$. It is well known that the number of $a$-core partitions is infinite and the number of simultaneous $(a, b)$-core partitions is a generalized Catalan number if $a$ and $b$ are relatively prime. Numerical semigroups are additive monoids that have finite complements, and they are closely related to core partitions. The first half of the talk, we will talk about an expression for the number of simultaneous $(a_1,a_2,\dots, a_k)$-core partitions. In the second half, we discuss the relationship between numerical semigroups and core partitions, along with how to count numerical semigroups with certain restrictions.