Department of

March 2019April 2019May 2019 Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa Su Mo Tu We Th Fr Sa 1 2 1 2 3 4 5 6 1 2 3 4 3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 10 11 10 11 12 13 14 15 16 14 15 16 17 18 19 20 12 13 14 15 16 17 18 17 18 19 20 21 22 23 21 22 23 242526 27 19 20 21 22 23 24 25 24 25 26 27 28 29 30 28 29 30 26 27 28 29 30 31 31

Friday, April 5, 2019

**Abstract:** We study derivations $\delta$ on o-minimal fields $K$. We introduce the notion of a $T$-derivation, which is a derivation which cooperates with the 0-definable $\mathcal{C}^1$-functions on $K$. For example, if $K$ is an elementarily equivalent to the real exponential field, we require that $\delta \exp(a) = \exp(a)\delta a$ for all $a \in K$. Let $T$ be the theory of $K$ in an appropriate language $L$ and let $T^\delta$ be the $L\cup \{\delta\}$ theory stating that $\delta$ is a $T$-derivation. We show that if $T$ has quantifier elimination, then $T^\delta$ has a model completion $T^\delta_G$. The derivation in models $K$ of $T^\delta_G$ behaves "generically," it is wildly discontinuous and its kernel is a dense elementary $L$-substructure of $K$. If $T$ is the theory of real closed ordered fields, then $T^\delta_G$ is the theory of closed ordered differential fields (CODF) as introduced by Michael Singer. We are able to recover many of the known facts about CODF in our setting. Among other things, we show that $T^\delta_G$ has $T$ as its open core and that $T^\delta_G$ is distal. This is joint work with Antongiulio Fornasiero.