Abstract: Schubert polynomials, introduced by Lascoux and Schützenberger in 1982, represent cohomology classes of Schubert cycles in flag varieties. While there are a number of combinatorial formulas for Schubert polynomials, their supports have only recently been established and the values of their coefficients are not well understood. We show that the Newton polytope of a Schubert polynomial is a generalized permutahedron and explain how to obtain certain Schubert polynomials as projections of integer point transforms of polytopes. The latter generalizes the well-known relationship between Schur functions and Gelfand-Tsetlin polytopes. We will then turn to the study of the coefficients of Schubert polynomials and show that Schubert polynomials with all coefficients at most $k$, for any positive integer $k$, are closed under pattern containment. We also characterize zero-one Schubert polynomials by a list of twelve avoided patterns. This talk is based on joint works with Alex Fink, Ricky Liu and Avery St. Dizier.