Department of

March 2019 April 2019 May 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 1 2 3 4 5 6 1 2 3 4 3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 10 11 10 11 12 13 14 15 16 14 15 16 17 18 19 20 12 13 14 15 16 17 18 17 18 19 20 21 22 23 21 22 23 24 25 26 27 19 20 21 22 23 24 25 24 25 26 27 28 29 30 28 29 30 26 27 28 29 30 31 31

Friday, April 19, 2019

**Abstract:** Given a class $\mathcal{C}$ of spaces, When does there exist a space $\mathcal{U}$ that is injectively or projectively universal for $\mathcal{C}$ under the appropriate operation-preserving mappings? Furthermore, when is $\mathcal{U}$ in $\mathcal{C}$ ? The question has been answered under certain conditions using tools both in analysis and logic. We will look at both classical and recent results, as well as some of the techniques used to arrive at them. If time permits, we will end with some open questions.