Department of

April 2019 May 2019June 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su MoTuWe Th Fr Sa 1 2 3 4 5 6 1 2 3 4 1 7 8 9 10 11 12 13 5 6 7 8 9 10 11 2 3 4 5 6 7 8 14 15 16 17 18 19 20 12 13 14 15 16 17 18 9 10 11 12 13 14 15 21 22 23 24 25 26 27 19 20 21 22 23 24 25 16 17 18 19 20 21 22 28 29 30 26 27 28 29 30 31 23 242526 27 28 29 30

Monday, May 13, 2019

**Abstract:** Given an algebraic variety $X$ with an action of a reductive group $G$, geometric invariant theory splits $X$ as the disjoint union $X=X^{ss}\sqcup X^{un}$ of the semistable and unstable locus. The Kirwan-Ness stratification refines $X$ even more by describing $X^{un}$ as a disjoint union of strata $X^{un}=\displaystyle\sqcup_{\beta\in\textsf{KN}} S_\beta$ determined by 1-parameter subgroups $\beta$. In this talk we will describe an algorithm that finds the $\beta$'s and show that such algorithm can be simplified when our space is of the form $T^*V$ where $V$ is a vector space.