Department of

August 2019September 2019October 2019 Su Mo Tu We Th Fr Sa Su Mo TuWeTh Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 171819 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Wednesday, September 4, 2019

**Abstract:** Curve counting invariants on K3 surfaces turn out to have an interesting connection to modular forms via Yau-Zaslow formula. In this talk, starting from the basic properties of K3 surfaces, I’ll discuss two proofs of Yau-Zaslow formula due to Beauville which uses Euler characteristic of compactified Jacobian, and Bryan-Leung using Gromov-Witten technique. If time permits, I’ll describe generalizations of the formula such as Göttsche’s formula and Katz-Klemm-Vafa formula.