Department of

August 2019September 2019 October 2019 Su Mo TuWeTh Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 18 19 202122 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Thursday, September 5, 2019

**Abstract:** Counting embedded curves on a hyperbolic surface as a function of their length has been much studied by Mirzakhani and others. I will discuss analogous questions about counting incompressible surfaces in a hyperbolic 3-manifold, with the key difference that now the surfaces themselves have intrinsic topology. As are only finitely many incompressible surfaces of bounded Euler characteristic up to isotopy in a hyperbolic 3-manifold, it makes sense to ask how the number of isotopy classes grows as a function of the Euler characteristic. Using Haken’s normal surface theory and facts about branched surfaces, we can characterize not just the rate of growth but show it is (essentially) a quasi-polynomial. Moreover, our method allows for explicit computations in reasonably complicated examples. This is joint work with Stavros Garoufalidis and Hyam Rubinstein.