Department of

August 2019September 2019October 2019 Su Mo Tu We Th Fr Sa Su Mo TuWeTh Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 171819 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Thursday, September 19, 2019

**Abstract:** For any prime p > 3, the strongest lower bounds for the number of imaginary quadratic fields with discriminant down to -X for which the class group has trivial (resp. non-trivial) p-torsion are due to Kohnen and Ono (Soundararajan). I will discuss refinements of these classic results in which we consider the imaginary quadratic fields for which the class number is indivisible (divisible) by p and which satisfy the property that a given finite set of rational primes split in a prescribed way. We prove a lower bound for the number of such fields with discriminant down to -X which is of the same order of magnitude as in Kohnen and Ono's (Soundararajan's) results. For the indivisibility case, we rely on a result of Wiles establishing the existence of imaginary quadratic fields with trivial p-torsion in their class groups which satisfy a finite set of local conditions, and a result of Zagier which says that the Hurwitz class numbers are the Fourier coefficients of a mock modular form.