Department of

August 2019 September 2019 October 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Thursday, September 19, 2019

**Abstract:** For any prime p > 3, the strongest lower bounds for the number of imaginary quadratic fields with discriminant down to -X for which the class group has trivial (resp. non-trivial) p-torsion are due to Kohnen and Ono (Soundararajan). I will discuss refinements of these classic results in which we consider the imaginary quadratic fields for which the class number is indivisible (divisible) by p and which satisfy the property that a given finite set of rational primes split in a prescribed way. We prove a lower bound for the number of such fields with discriminant down to -X which is of the same order of magnitude as in Kohnen and Ono's (Soundararajan's) results. For the indivisibility case, we rely on a result of Wiles establishing the existence of imaginary quadratic fields with trivial p-torsion in their class groups which satisfy a finite set of local conditions, and a result of Zagier which says that the Hurwitz class numbers are the Fourier coefficients of a mock modular form.