Department of

August 2019 September 2019 October 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 4 5 6 7 8 9 10 8 9 10 11 12 13 14 6 7 8 9 10 11 12 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 25 26 27 28 29 30 31 29 30 27 28 29 30 31

Friday, September 20, 2019

**Abstract:** Let $f: D \rightarrow \Omega$ be a complex analytic function. The Julia quotient is given by the ratio between the distance of $f(z)$ to the boundary of $\Omega$ and the distance of $z$ to the boundary of $D.$ A classical Julia-Carathéodory type theorem states that if there is a sequence tending to $\tau$ in the boundary of $D$ along which the Julia quotient is bounded, then the function $f$ can be extended to $\tau$ such that $f$ is nontangentially continuous and differentiable at $\tau$ and $f(\tau)$ is in the boundary of $\Omega.$ We develop an extended theory when $D$ and $\Omega$ are taken to be the upper half plane which corresponds to amortized boundedness of the Julia quotient on sets of controlled tangential approach, so-called $\lambda$-Stolz regions, and higher order regularity, including but not limited to higher order differentiability, which we measure using $\gamma$-regularity. I will discuss the proof, along with some applications, including moment theory and the fractional Laplacian. This is joint work with J.E. Pascoe and Ryan Tully-Doyle.