Department of

September 2019 October 2019 November 2019 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 1 2 3 4 5 1 2 8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9 15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23 29 30 27 28 29 30 31 24 25 26 27 28 29 30

Thursday, October 17, 2019

**Abstract:** Let $L(s)$ be the $L$-function of a cuspidal automorphic representation of $GL(n)$ with analytic conductor $C$. The Phragmen-Lindelof principle implies the convexity bound $|L(1/2)| \ll C^{1/4+\epsilon}$ for all fixed $\epsilon>0$, while the generalized Riemann hypothesis for $L(s)$ implies that $|L(1/2)|\ll C^{\epsilon}$. A major theme in modern number theory is the pursuit of subconvexity bounds of the shape $|L(1/2)| \ll C^{1/4-\delta}$ for some fixed constant $\delta>0$. I will describe how to achieve (i) an unconditional nontrivial improvement over the convexity bound for all automorphic $L$-functions (joint work with Kannan Soundararajan), and (ii) an unconditional subconvexity bound for almost all automorphic $L$-functions (joint work with Asif Zaman).