Department of

September 2019 October 2019November 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu WeThFr Sa 1 2 3 4 5 6 7 1 2 3 4 5 1 2 8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9 15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 202122 23 29 30 27 28 29 30 31 24 25 26 27 28 29 30

Tuesday, October 22, 2019

**Abstract:** By results of A.S. Kechris, whenever a locally compact Polish group acts continuously on a Polish space, the orbit equivalence relation of the action is essentially countable—that is, Borel reducible to the orbit equivalence relation of an action of a countable group. It is unknown if this characterizes the locally compact Polish groups. S. Solecki, after proving an analogous characterization for smooth actions of compact Polish groups, showed this to be true in the case where the group, G, is the additive group of a separable Banach space. The characterization also holds for abelian pro-countable groups, by results of M. Malicki. We discuss recent work on this problem, including an extension of this characterization to some important classes of Polish groups. This is joint work with A.S. Kechris, M. Malicki, and A. Panagiotopoulos.