Department of

October 2019 November 2019December 2019Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr SaSuMo Tu We Th Fr Sa 1 2 3 4 5 1 2 1 2 3 4 5 6 7 6 7 8 9 10 11 12 3 4 5 6 7 8 989 10 11 12 13 14 13 14 15 16 17 18 19 10 11 12 13 14 15 16 15 16 17 18 19 20 21 20 21 22 23 24 25 26 17 18 19 20 21 22 23 22 23 24 25 26 27 28 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31

Tuesday, November 12, 2019

**Abstract:** Symmetric monoidal categories have (at least) two allures to homotopy theorists: they describe the algebraic structure appearing in many categories of interest, and they effectively model all connective spectra. Equivariantly, both of these tasks become more interesting, as the category of (connective) genuine equivariant spectra is significantly more subtle. In this talk, I introduce a new model for equivariant symmetric monoidal categories which both describes the algebraic structure in equivariant categories and has a K-theory functor to genuine G-spectra. I will give several examples and applications, including comparisons to many previously proposed models of genuine symmetric monoidal categories and equivariant algebra.